May 5
HW $4.4(b) \quad \zeta=e^{2 \pi i / p}$
ρ is a nost of $x^{p}-1=(x-1) \frac{\left(x^{2}+x^{p-2}+\cdots+1\right)}{1}$ irred by tew min pily of 5
$O \subset Q(\rho)$ degrce p^{-1}
$\imath^{1, \rho, \rho^{2}, \ldots, \rho^{p-2}}$ is basis $g^{p-1} \in \mathbb{Q}(\rho)$

$$
\rho^{p-1}+\rho^{p-2}+\cdots 1=0
$$

Recap

- Giver a fell ext $K \subset L$, we say $\alpha \in L$ is separable if its minimal polynomial has distinct roots in its spiting field.
- Say KCL is separde if ever $\alpha \in L$ separable
- Say $f(x) \in K[x]$ separable it it reverts are distinct in a splitity
Prop If $f^{E K}$ and f^{\prime} are derivative

 the f is separable.
PE:

$$
\begin{aligned}
& f(x)=(x-\alpha)^{2} g(x) \quad \begin{array}{|cc|}
\hline \text { not } k \\
\text { ne } h
\end{array} \\
& \text { factorization in spoiling } \\
& f^{\prime}(x)=2(x-\alpha) g+(x-\alpha)^{2} g^{\prime} \\
& =(x-2)(2 g+(x-2-g)
\end{aligned}
$$

$\Rightarrow(x-\alpha) \mid f$ and $(x-\alpha) \mid f 1$
If $g(x)$ is out n pily of α
here $g(x) \in K[x]$
Since $f(\alpha)=f^{\prime}(\alpha)=0$,
$g \mid f$ and $g l f^{\prime}$

$$
\sqrt{(x-1)^{2}}
$$

Cor: Anyippoly felk[x] with charcuebrotic of 12 zero is separable. ($f=x^{n}+a_{n-1} x^{n-1}+\cdots$)
Cor: Any extersin Kl of field of char $=0$ separable.
(Reason? In weer $=0$,

$$
\begin{aligned}
& \text { eaten: In char }=0, \\
& \left.d \operatorname{leg}(t)=d \Longrightarrow \operatorname{deg}\left(f^{\prime}\right)=d-1\right)
\end{aligned}
$$

Not tone in cher ep

$$
\begin{aligned}
& \text { ot tone in ser }=\text {) } \\
& \text { Exi } f=x^{p} \quad f^{\prime}=p x^{p l}=0
\end{aligned}
$$

Cor: $f=x^{p^{n}}-x \in \mathbb{F}_{p}[x]$ is separable.
Reason: $f^{1}=p^{n} \cdot x^{p^{n}-x}-1$

$$
=-l
$$

f \&f f^{\prime} are rel prime
Finite Fiends
Gaz: D For each prime P and each $n \geqslant 1$, there exist a crigue field, crested by $\|_{p_{n}}$, with p^{n} elements.
(2) Moreover, $\mathbb{F}_{p} c \mathbb{F}_{p}$
the spiting diecul of $x^{p^{n}}-x \in \mathbb{F}[x]$.
(3) $\mathbb{F}_{p} \subset \mathbb{F}_{p}$ normal \& separable of degree n

Strategy: If F is a finite fell,

$$
\begin{aligned}
& \mathbb{Z}_{n} \stackrel{\phi}{\square} \underbrace{1+1+\cdots+1}_{n}
\end{aligned}
$$

is not infective
The Kernel $\operatorname{ker}(\phi)=(p)$ is pine and P is the charatoistic.

$$
\begin{aligned}
& \sim \mathbb{F}_{p} \subset \mathbb{F}_{\text {vector space/ }} \mathbb{F}_{p} \\
& n:=\left[F: \mathbb{F}_{p}\right] \quad \# F=p^{n}
\end{aligned}
$$

Existare
Let $\mathbb{F}_{p} \subset K$ be splinting feed of $x^{n}-x$.
Know K contains all p^{n} rots of $x^{2}-x$ But why not anything else?
Let $\alpha_{y}, \alpha_{2}, \ldots, \alpha_{p}$ be roots
Claim: $K=\left\{\alpha_{y}, \alpha_{1} p_{1}\right\}$

Reasen: K is closed under

$$
\begin{aligned}
& \text { alcition } \frac{1}{} \text { multiphich } \\
& \left(\alpha_{i}+\alpha_{j}\right)^{p^{n}}=\alpha_{i}^{p^{n}}+\alpha_{j}^{p^{n}} \\
& =\alpha_{i}+\alpha_{j}
\end{aligned}
$$

Ex:- $\sqrt[3]{2}$ and $\sqrt[3]{2} \omega$ are both rods of $x^{3}-2$ but Hoer sum iso st Similarly, $\left(\alpha_{i} \alpha_{j}\right)^{p^{n}}=\alpha_{i} \alpha_{j}$
Since is the strallost field crating all the roots, we see $K=\left\{\alpha_{y}, \cdots, \alpha_{p}\right\}$
Consequence:
K is a died of six p^{n}

